什么是flash技术?(3D NAND Flash技术将走向何方)

qinzhiqiang 12-09 17:44 727次浏览

来源:内容由半导体行业观察(ID:icbank)编译自「eetimes.jp」,谢谢。

“IMW 2020”论文集的表纸。(International Memory Workshop论文集的第一页)

2020年5月17日-20日举行了在线IMW(International Memory Workshop),笔者自2018年起已经连续三年参加IMW会议,而在线会议还是首次参加。今年的会议中,有关3D NAND的论文数量最多,因此,笔者就各家NAND型闪存(以下简称为:“NAND”)厂家的现状、未来的技术蓝图(Roadmap)展开论述。

NAND的历史

5月17日的会议(Tutorial)“PART I – 3D NAND”中,首位出场的是铠侠(原东芝存储半导体)的Noboru Shibata先生,他在主题为《History and Future of Multi-Level-Cell Technology in 2D and 3D Flash Memory》的演讲中,说明了NAND的历史

图1:NAND存储密度增加的趋势。(Noboru Shibata, KIOXIA Corp., “History and Future of Multi-Level-Cell Technology in 2D and 3D Flash Memory”, IMW2020, Tutorials PART 1.)

Noboru Shibata先生以NAND的字位(Bit)为焦点,如上图1展示了2字位(MLC)、3字位(TLC)、4字位(QLC)分别对应了何种细微性、何种存储容量的芯片。

在2009年(32纳米)以后,存储半导体密度的增长趋势呈现了一时的放缓现象,自2016年开始转向3D趋势,且趋势越来越明显。因此,人们普遍期待未来3D化的NAND将会继续扩大存储的密度。

Shibata先生的演讲之后,WD的Yan Li先生做了题目为《3D NAND Architecture and its Application》的演讲,其中提到31年来NAND的细微化全过程。如下图2所示。NAND存储密度增加的趋势。(Yan Li, Western Digital Corporation, “3D NAND Architecture and its Application”, IMW2020, Tutorials PART 1.)

1987年在IEDM上公布的NAND的细微化为1um。此次的发言者应该是NAND的发明人—舛冈富士雄先生(笔者推测),在次年的1988年,以1um生产出了4M bit的NAND,1992年以0.7um发布了16M bit。自此,东芝的NAND业务开始正式启动。

后来,随着细微化、高度集成化的发展,2014年以1Znm(应该是15纳米)发布了128Gbit的NAND。但是,后来由于发生了近邻存储单元(Memory Cell)之间的串扰(Cross Talk)问题,放弃了2D的细微化,自2015年开始转入(Paradigm Shift)3D时代。而且,除了细微化,还开始了在纵向堆积更多层数的“多层化”发展。

这种多层化以48层、64层、96层(约1.5倍)的形式发展,可以推测,下一步应该是1.2倍的112层。

各3D NANA厂家的现状

会议(Tutorial)“PART I – 3D NAND”的第三位演讲者是Applied Materials(AMAT)的Tomohiko Kitajima先生,演讲题目为《Materials and process technology driven 3D NAND Scaling beyond 200 pairs》。在这篇演讲中Tomohiko Kitajima先生简明地分析、比较了各家NAND厂商的现状,且说明了未来的技术蓝图。这篇演讲,为理解3D NAND,很有帮助,且演讲者在过程中反复展示了视频说明。下面笔者简单介绍其中一部分。

下图3是各家厂商生产的3D NAND的所有断面SEM图,此外,图4是各家厂商的最新的3DNAND的SEM照片与构造。看到这两幅图,笔者感觉很震惊、很有价值。

各家存储半导体厂家的3D NAND的断面SEM照片。(图片出自:Tomohiko Kitajima, Applied Materials, “Materials and process technology driven 3D NAND Scaling beyond 200 pairs ”, IMW2020, Tutorials PART 1.)

各家存储半导体厂家的最新的3D NAND的比较。(Tomohiko Kitajima, Applied Materials, “Materials and process technology driven 3D NAND Scaling beyond 200 pairs ”, IMW2020, Tutorials PART 1.)

行业先驱–三星(Samsung Electronics)直面的问题

下面我们再看下一仅从这一张图我们就可以看到各家集团公司的技术、战略、面临的问题等信息。

三星(Samsung Electronics)正在推进24层、32层、48层、64层、92层以及3D的的多层化发展,由于中国西安工厂大量生产并最先开始出货的是48层,因此可以判断24层、32层是样品交货。三星是最先开始出货48层产品的,且已经发售64层产品,因此可以断言三星控制了48层和64层的市场。

业界普遍认为三星竞争力的来源在于纵横比(Aspect Ratio、AR)较大的内存孔(Memory Hole)的干蚀刻技术(Dry Etching)。三星通过与Lam Research共同研发,开发了AR较大的HARC(High Aspect Ratio Contact)蚀刻设备与技术,远远领先于其他公司。

此外,在64层的下一代产品上,三星“摔了一个大跟头”,尽管其他公司已经开始生产96层,只有三星在生产这种处于中间位置的92层的产品。此外,从断面图的高度来看,三星的92层纵向高度明显比其他公司的96层低了很多。

主要原因如下:铠侠与WD等其他公司的96层是利用两个48层堆叠而成的,然而仅有三星采用了一次性加工的方式、进行内存孔(Memory Hole)的HARC蚀刻。

也就是说,AR越大,HARC蚀刻的难度也越大。具体而言,蚀刻速度会呈现指数级的降低,且会发生各种异常情况,如很难控制内存孔(Memory Hole)的方差。

为此,三星将纵向的层数做成92层(比其他公司少了4层),进一步将存储单元(Memory Cell)朝纵向收缩,尽量把HARC的AR做得更小。据推测,三星的92层的产品良率十分低。

尽管如此,三星在2019年11月19日公布说,新一代的128层也会采用一次性加工的方式进行生产。笔者认为,与其拘泥于一次性加工的生产方式,不如再研发其他新的生产方式,因此三星的未来堪忧。

铠侠和WD生产的96层产品

与由于对HARC蚀刻技术怀有较大的信心而“摔了跟头”的三星不同,铠侠和WD通过96层产品统领了全球市场。根据笔者从供应链等处得到的信息来看,在2019年时间点的第四季度,日本四日市工厂的96层的稼动产能是三星的3倍-4倍。

那么,为什么铠侠和WD可以在96层上获得成功呢?

在64层之前,铠侠和WD在HARC蚀刻技术方面,都远远落后于三星。因此,他们尽早地将堆叠两个48层应用到了96层上。

从图3 来看,就96层而言,三星以外的其他厂家都分为Lower和Upper。在这种双层堆叠方式形成96层的情况下,很难将12英寸晶圆完美地与将近约2兆个内存孔(Memory Hole)贴合。据推测,即使在四日市工厂,也曾因为这个问题而导致产品的良率低下。

此外,自2019年夏季开始,行业的趋势就变化了。笔者从就职于铠侠的朋友得知,“如果要我们堆叠500层,我们也可以做到”!就内存孔(Memory Hole)贴合的技术而言,笔者推测他们应该是取得了某种技术突破(Breakthrough)。此外,据笔者调查的各家NAND厂家的稼动产能而言,如上文所述,四日市工厂的96层,具有压倒性的规模。

下面我们再看一下图3,Intel&Micron在64层以后,采用了双层堆叠的方式。此外,海力士是自72层以后(不是64层),采用双层堆叠的方式。

此外,比较一下各家的双层堆叠方式,我们可以看出,铠侠和WD的Lower、Upper的分界线十分明显。因此笔者推测,铠侠和WD为解决内存孔的贴合问题,在Lower、Upper之间植入了某种特殊的构造。笔者认为,正是这种特殊的构造技术使铠侠和WD的双层堆叠的良率大幅度提高、产能远超三星,且顺利地生产96层。

三星由于对HARC蚀刻技术过度自信,导致“栽了跟头”,但是,铠侠和WD及时地放弃了一次性加工的生产方式,所以成功了生产了96层的双层堆叠方式。这让人想起了2020年1月23日逝去的哈佛商业学院的Clayton M. Christensen教授提出的“创新的困境(Innovation Dilemma)”。

各厂家的最新3D NAND

下面我们看看下图5,即比较了各家厂商的最新3D NAND的图。此处最引人注目的是中国的紫光集团旗下的长江存储(YMTC,原XMC)的3D NAND。

图5:比较各家厂商的最新3D NAND。(图片出自:Tomohiko Kitajima, Applied Materials, “Materials and process technology driven 3D NAND Scaling beyond 200 pairs ”, IMW2020, Tutorials PART 1.)

2016年3月,YMTC突然宣布要进军3DNAND。YMTC 以较高的薪资待遇汇集了大批的日本、台湾、韩国等地的半导体技术人员,首先致力于32层的研发。仅仅用了一年的时间就成功研发了32层的产品,且跳过48层直接开始研发64层。同时,2019年9月17日,YMTC成功量产了64层。

就YMTC的64层产品而言,控制数据读取、写入的CMOS线路由一种不同于存储单元(Memory Cell)的晶圆制造而成,分别通过Bonding工艺进行贴合。

为了扩大单个芯片的存储密度,一般采用的是将CMOS线路放在存储单元下部的CUA结构(CMOS Under Array),实际上,Intel&Micron和海力士正是采用的这种模式。但是,YMTC的Xtacking则采用不同的键合工艺!

在2019年第四季度时间点,YMTC的64层稼动产能不足2万个,但是,在2020年4月12日,YMTC发布说,成功研发了128层的、1.33Terabit、QLC的3D NAND。未来,3D NAND的“风向标”可能要发生变化了。

3D NAND的技术蓝图(Roadmap)

一场出人意料的新冠肺炎促使了远程办公、在线授课、在线诊疗等网上业务的发展。IMW2020也是在线召开的。结果,导致了数据中心(Data Center)的需求暴增,用于服务器的NAND的需求也呈现了爆发式增长。

因此,人们对于3D NAND的高密度化的期待越来越高。其研发的R&D的蓝图如下图6所示。如今,各家厂家都在努力推进128层(铠侠和WD是112层)的量产工作。未来,层数应该还是更高,从蓝图上看,2021年-2022年研发200层,2022年-2023年研发250层以及以上。从技术蓝图来看,Charge Trap方式是具有代表意义的3D NAND结构(如图7)。

图6:3D NAND的R&D 技术蓝图。(图片出自:Tomohiko Kitajima, Applied Materials, “Materials and process technology driven 3D NAND Scaling beyond 200 pairs ”, IMW2020, Tutorials PART 1.)

图7:Charge Trap方式–具有代表意义的3D NAND。(图片出自:Tomohiko Kitajima, Applied Materials, “Materials and process technology driven 3D NAND Scaling beyond 200 pairs ”, IMW2020, Tutorials PART 1.)

为了实现以上这些多层化,如图6下部所示的研发是必不可缺的。首先, 就左侧的“Architecture Change”而言,会把CMOS线路配置在存储单元格(Memory Cell)的下面(CUA),或者像YMTC的做法一样采取Bonding的方式,增大单个芯片的面积上的存储密度。这种技术已经被多个NAND厂家采用。

所谓的“Vertical Scaling”技术,指的是在纵向可以堆叠多少层的存储单元。此图中清晰地写着未来的发展趋势。首先,有一个单纯地增加存储单元格(Cell)数量的“More Pairs”。其次,有一个“WL(Ward Line)Pitch Reduction”(三星已经采用此项技术)。这是一种纵向收缩存储单元格尺寸的技术方法。运用此技术,如果是同样的Pair数量,由于可以降低Stack Height,内存孔(Memory Hole)的HARC加工将会变得很容易。

此外,如果同时进行“WL Pitch Reduction”和“More Pairs”,迟早会出现“Multi Tiers”(多层堆叠)。三星以外的厂家已经运用到量产产品中。笔者认为,未来三星肯定也会转移到“Multi Tiers”(多层堆叠)。此外,笔者还认为,所有的NAND厂家未来都为朝着堆叠双层、三层、四层甚至更多的方向发展。

另外,作为扩大存储密度的方法,还有一种是“Lateral Scaling”。这是一种通过横向收缩的方式,来扩大单个芯片存储密度的技术手段。“Lateral Scaling”有两种方式,其一为“More Holes b/w Slits”,即将Slit和Slit之间的内存孔的数量由现在的九个增加至十四个。其二为“Hole BL(Bit Line) Pitch Reduction”,即缩小存储孔的直径,使存储孔的密度更高。

但是,这两种研发都需要HARC蚀刻,此外,“More Pairs”的实行还存在很多复杂的问题,各家NAND厂家都需要在元件构造、材料、工艺流程等方面下工夫,在与生产设备厂家以及材料厂家共同研发的同时,推进存储半导体的高密度化。

另外,就像三星掌控了48层和64层、铠侠和WD掌控了96层一样,真正在高密度方面获得突破性发展的NAND厂家才能掌握新时代的霸权。究竟会花落谁家呢?也许我们能在下次在德国德累斯顿(Dresden)召开的IMW2021上看到端倪。笔者明年(2021年)还会继续参加IMW。

笔者简介:

汤之上隆 细微加工研究所所长

生于1961年,出生于日本静冈县。毕业于京都大学研究生院(硕士课程为原子核工学专业),后就职于日立制作所。此后16年中,先后在中央研究所、半导体事业部、设备研发中心、尔必达(因工作调动)、半导体前沿技术公司研发协会(即Selete,因工作调动)从事精密加工技术研发工作。2000年,被京都大学授予工学博士学位。目前,担任半导体产业和电力机械产业顾问及撰稿人,细微加工研究所所长。著有《日本“半导体”的战败》《“电器、半导体”产业大崩溃的教训》、《日本型制造业的败北,零战·半导体·电视机》。

*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。